Examen Parcial - Introducción a los Algoritmos - 18 de Abril de 2016 Comisiones Turno Mañana

nota	1	2	3	4	5

Apellido y Nombre:

Cantidad de hojas entregadas: ___ (Numerar cada hoja.)

- 1. [10 pto(s)] Definir la función $algunOrden: (Num, Num, Num) \rightarrow Bool$ que dada una terna de números devuelve True si y sólo si están en orden ascendente o descendente. Ejemplos:
 - (I) algunOrden.(10,3,1) = True
 - (II) algunOrden.(1,2,3) = True
 - (III) algunOrden.(1,3,2) = False
- 2. a) [15 pto(s)] Definir la función recursiva absoluto : $[Num] \rightarrow [Num]$, que dada una lista de números construye una lista con los valores absolutos de los números de la primera. Ejemplo:

absoluto.
$$[-2, 7, -9, -11] = [2, 7, 9, 11]$$

- b) [5 pto(s)] Evaluar la función para el ejemplo anterior, justificando cada paso.
- 3. a) [15 pto(s)] Definir la función recursiva superaNota : $Num \to [Num] \to Num$ que dado un número n y una lista de números xs retorna cuántos elementos de xs son mayores o iguales a n. Ejemplos:
 - (I) superaNota.4.[2, 3, 4] = 1.
 - (II) superaNota.7.[1, 10, 2, 1, 7] = 2.
 - b) [5 pto(s)] Usar la función anterior para definir la función regulares : $[Num] \to Num$ que dada una lista xs de notas de alumnos, devuelve la cantidad de alumnos que regularizaron pero no promocionaron, es decir, la cantidad de notas n en xs que cumplen $4 \le n < 6$. Ejemplos:
 - (i) regulares.[3, 5, 10, 8] = 1.
 - (II) regulares. [4, 7, 2, 10, 6] = 2.
- 4. [20 pto(s)] Dadas las siguientes funciones $\#: [A] \to [A] \to [A]$ y $\#: [A] \to Num$ definidas como:

demuestre por inducción que #.(xs + ys) = #.xs + #.ys

5. [30 pto(s)] Dada la función recursiva cuantosPares : $[Num] \rightarrow Num$ que cuenta la cantidad números pares en una lista, y soloPares : $[Num] \rightarrow [Num]$ que filtra los números pares de una lista, definidas como:

$$\begin{array}{ccc} cuantos Pares. [\] & \doteq & 0 \\ cuantos Pares. (x \rhd xs) & \doteq & (x \bmod 2 = 0 \to 1 + cuantos Pares. xs \\ & \Box x \bmod 2 \neq 0 \to cuantos Pares. xs \\) & \\ solo Pares. [\] & \doteq & [\] \\ solo Pares. (x \rhd xs) & \doteq & (x \bmod 2 = 0 \to x \rhd solo Pares. xs \\ & \Box x \bmod 2 \neq 0 \to solo Pares. xs \\ & \Box x \bmod 2 \neq 0 \to solo Pares. xs \\ &) & \\ \end{array}$$

demuestre por inducción que cuantosPares.xs = #.(soloPares.xs)